Printing from CFormView

There are several reasons for using a CFormView derived View Class, all of which are documented in the MFC documentation. As you may have found out, CFormView does not print the controls rendered in the View automatically. The code snippet below shows a quick way to get your CFormView application printing your screen, if that is all that you need. Please note, you’ll need a much better exception handling mechanism than my example. Nevertheless, this example demonstrates a quick way to get a printable CFormView View.

Our view class, called CPrintView is derived from CFormView.

Only 4 additional variables are needed to make CPrintView printable

They are 

CDC * m_pMemDC; //A memory device context compatible with our printer DC.


CRect m_rect; //To hold the dimensions of our printing area while scaling.


CBitmap * m_pBm; //Capture the screen image as a Bitmap


BOOL m_bFlag; //A boolean variable to create m_pBm and m_pMemDC only once. 

 

That’s it. 

Let’s see this in action.

In our view’s contructor, we initialize our variables:

CPrintView::CPrintView()


: CFormView(CPrintView::IDD)

{
m_pMemDC = new CDC ;


m_pBm = new CBitmap;


m_bFlag = FALSE;


//{{AFX_DATA_INIT(CPrintView)



// NOTE: the ClassWizard will add member initialization here


//}}AFX_DATA_INIT


// TODO: add construction code here

}

Next we override CPrintView::OnBeginPrinting(..) as follows:

void CPrintView::OnBeginPrinting(CDC* pDC, CPrintInfo* /*pInfo*/)

{


// TODO: add extra initialization before printing



if (m_bFlag== FALSE) 


//We can safely assume that this is the first time we are being asked to print.

{m_pMemDC->CreateCompatibleDC(pDC);}

CClientDC dc(this);

CRect rect;

GetClientRect(rect);

m_pMemDC->SetMapMode(MM_ANISOTROPIC);

m_pMemDC->etWindowExt(dc.GetDeviceCaps(LOGPIXELSX),dc.GetDeviceCaps(LOGPIXELSY));

m_pMemDC->SetViewportExt(m_pMemDC->GetDeviceCaps(LOGPIXELSX),m_pMemDC->GetDeviceCaps(LOGPIXELSY));


if (m_bFlag== FALSE)


{m_pBm->CreateCompatibleBitmap(&dc,rect.Width(),rect.Height());}


//We can safely assume that this is the first time we are being asked to print.


m_pMemDC->SelectObject(m_pBm);


dc.DPtoLP(rect);


m_rect = rect;


m_pMemDC->BitBlt(0,0,rect.Width(),rect.Height(),&dc,0,0,SRCCOPY);


if (m_bFlag== FALSE)



m_bFlag = TRUE;

}

Next we need to override CPrintView::OnPrint(..)

void CPrintView::OnPrint(CDC* pDC, CPrintInfo*)

{


// TODO: add code to print the controls

//The Following code scales the image based on printer resolution.

pDC->SetMapMode(MM_ANISOTROPIC);

pDC->SetWindowExt(m_pMemDC->GetDeviceCaps(LOGPIXELSX),m_pMemDC->GetDeviceCaps(LOGPIXELSY));

pDC->SetViewportExt(pDC->GetDeviceCaps(LOGPIXELSX),pDC->GetDeviceCaps(LOGPIXELSY));

pDC->StretchBlt(0,0,m_rect.Width(),m_rect.Height(),m_pMemDC,0,0,m_rect.Width(),m_rect.Height(),SRCCOPY);

}

Lastly, we need to handle the destruction of our variables

CPrintView::~CPrintView()

{delete m_pMemDC; //Clean Up Our Variables

delete m_pBm;

}

That’s it.

Vinay Desai, Ph.D.

Here are a couple of screen shots showing our printable view in action





